skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Elsayed-Ali, Hani E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A niobium laser multicharged ion source was developed using laser ablation with 10-ns, 1064-nm pulses and a laser fluence of 10–83 Jcm-2. Three distinct groups of Nb ions were detected: ultrafast, fast, and thermal. The ions were accelerated and allowed to drift in a transport line containing an electrostatic ion energy analyzer, a retarding field analyzer, and a Faraday cup. Analysis of the ion energy and charge (z) showed that each group of ions experienced different acceleration potentials during plasma expansion. Time-of-flight (TOF) signal of the thermal ions showed overlap of the signals from Nb1+ and Nb2+. For the fast ion group, z up to Nb7+ was observed and the ion acceleration potential during plasma expansion increased with z, over the charge states from Nb1+ to Nb7+. The TOF signal indicated that the ultrafast ions were composed of higher-charge ions. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. null (Ed.)